MATH 579 Exam 7 Solutions

1. How many integers in $[1,900000]$ are relatively prime to 900000 ?

$$
900000=3^{2} 2^{5} 5^{5}, \text { so } \phi(900000)=\phi\left(3^{2}\right) \phi\left(2^{5}\right) \phi\left(5^{5}\right)=\left(3^{2}-3\right)\left(2^{5}-2^{4}\right)\left(5^{5}-5^{4}\right)=240000
$$

Or, directly, let P_{1}, P_{2}, P_{3} denote the property of being divisble by $2,3,5$ respectively. The desired quantity is $\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3}\right|=900 K-\left\lfloor\frac{900 K}{2}\right\rfloor-\left\lfloor\frac{900 K}{3}\right\rfloor-\left\lfloor\frac{900 K}{5}\right\rfloor+\left\lfloor\frac{900 K}{6}\right\rfloor+\left\lfloor\frac{900 K}{10}\right\rfloor+$ $\left\lfloor\frac{900 K}{15}\right\rfloor-\left\lfloor\frac{900 K}{30}\right\rfloor=240000$
2. How many four-digit integers are not divisible by 6,7 , or 8 ?

Let P_{1}, P_{2}, P_{3} denote the property of being divisble by $6,7,8$ respectively. Recall that $P_{1} \cap P_{3}$ is the property of being divisible by $\operatorname{LCM}(6,8)=24$. The number of desired integers in $[1,9999]$ is $9999-\left\lfloor\frac{9999}{6}\right\rfloor-\left\lfloor\frac{9999}{7}\right\rfloor-\left\lfloor\frac{9999}{8}\right\rfloor+\left\lfloor\frac{9999}{42}\right\rfloor+\left\lfloor\frac{9999}{24}\right\rfloor+\left\lfloor\left\lfloor\frac{9999}{56}\right\rfloor-\left\lfloor\frac{9999}{168}\right\rfloor=6429\right.$. The number of desired integers in $[1,999]$ is $999-\left\lfloor\frac{999}{6}\right\rfloor-\left\lfloor\frac{999}{7}\right\rfloor-\left\lfloor\frac{999}{8}\right\rfloor+\left\lfloor\frac{999}{42}\right\rfloor+\left\lfloor\frac{999}{24}\right\rfloor+\left\lfloor\frac{999}{56}\right\rfloor-$ $\left\lfloor\frac{999}{168}\right\rfloor=643$. Hence the number of desired integers in [1000,9999] is $6429-643=5786$.
3 . How many n-permutations are there with exactly one cycle of length one?
Suppose first that the length-one cycle is (1). The remaining $n-1$ elements can be any permutation where no element is sent to itself (otherwise there would be a second length-one cycle), a derangement. Hence there are D_{n-1} such permutations, with (1) the length-one cycle. However, there were n choices for the length-one cycle, so the answer is $n D_{n-1}$.
4. How many 10 -permutations are there with exactly one descent?

Say the descent is at position i, with $1 \leq i \leq 9$. We partition [10] into one part of size i, and one part of the rest. There are $\binom{\overline{10}}{i}$ ways to do this. There is one way to build a permutation of the desired type from these parts: each part must be in increasing order or there would be a second descent. Further, exactly one of these $\binom{10}{i}$ is forbidden: if the i components of the first part are exactly $[i]$ there are no descents at all. Thus the answer is $\sum_{i \in[1,9]}\binom{10}{i}-1=-11+\sum_{i \in[0,10]}\binom{10}{i}=-11+2^{10}=1013$.
5. How many solutions are there to $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=8$ where $0 \leq x_{i} \leq i$?

Set property P_{i} to be that $x_{i} \geq i+1$. With no restrictions, we put 8 identical balls into 6 different bins $\binom{6}{8}$. With P_{4}, we must have at least five balls in bin 4 ; remove them and we put 3 identical balls into 6 different bins $\binom{6}{3}$. With $P_{1} \cap P_{2}$ we must have at least two balls in bin 1 and three balls in bin 2 ; remove them and we put 3 identical balls into the bins $\binom{6}{3}$.

Putting it all together, we get $\left.\left.\left(\binom{6}{8}\right)-\binom{6}{6}-\left(\binom{6}{5}\right)-\left(\binom{6}{4}\right)-\binom{6}{3}-\binom{6}{2}\right)-\left(\binom{6}{1}\right)+\binom{6}{3}\right)_{\left(P_{1} \cap P_{2}\right)}+\left(\binom{6}{2}\right)_{\left(P_{1} \cap P_{3}\right)}+$ $\left.\binom{6}{1}_{\left(P_{1} \cap P_{4}\right)}+\binom{6}{0}_{\left(P_{1} \cap P_{5}\right)}+\binom{6}{1}\right)_{\left(P_{2} \cap P_{3}\right)}+\binom{6}{0}_{\left(P_{2} \cap P_{4}\right)}=455$. No other combinations are possible.
6. How many ways are there to place five (identical) nonattacking rooks on a 5×5 chessboard, with no rooks on the diagonal?

There must be one rook on each row. Let P_{i} denote the property that the rook on row i is on the diagonal (column i), and let A_{i} denote the set of placements that have property P_{i}. With no restrictions, there are 5 ! placements (5 choices for rook on row 1 , then 4 choices for rook on row 2 , etc.). $\left|A_{1}\right|=4$!, since after placing the rook in the first row in its required place, there are four choices for the next rook, three for the following, etc. Similarly, $\left|A_{2}\right|=\left|A_{3}\right|=\left|A_{4}\right|=\left|A_{5}\right|=4$!. Hence $\sum\left|A_{i}\right|=\binom{5}{1} 4$!. $\left|A_{1} \cap A_{2}\right|=3$!, since after placing the two rooks perforce, we place the three remaining rooks. Hence $\sum\left|A_{i} \cap A_{j}\right|=\binom{5}{2} 3$!. Continuing similarly, we have $\binom{5}{0} 5!-\binom{5}{1} 4!+\binom{5}{2} 3!-\binom{5}{3} 2!+\binom{5}{4} 1!-\binom{5}{5} 0!=44$.

Exam results: High score $=100$, Median score $=77$, Low score $=60$ (before any extra credit)

